May 18, 2022

519 Magazine

Complete News World

The near and far sides of the moon are surprisingly different.  A new study sheds light on the mystery

The near and far sides of the moon are surprisingly different. A new study sheds light on the mystery

Subscribe to CNN’s Wonder Theory newsletter. Explore the universe with news of amazing discoveries, scientific advances and more.


The far side of the Moon, which we can never see from our vantage point on Earth, looks surprisingly different from the orb we’re used to seeing in the night sky.

Our familiar near side looks darker in some places – the result of vast ancient lava flows, called the lunar mare – while the far side is covered in craters and craters but no mare.

Astronomers have long puzzled over why the two sides of the moon are so different. However, a study published last week in the journal Science Advances has come up with a new explanation for this lunar mystery.

Researchers at Brown University studied the largest impact crater on the Moon, known as the South Pole-Aitken Basin (or SPA). It is about 1,615 miles (2,600 km) wide and five miles deep, and was formed by a massive space body that collided with the moon – Perhaps a stray dwarf planet – when the solar system was forming.

The researchers found that the impact that formed the trough would have created an enormous plume of heat that would spread inside the moon, according to the statement. This plume would have carried some of the material to the near side of the moon, feeding the volcanoes that created the volcanic plains.

“We know that large impacts like the one that formed the SPA will create a lot of heat,” said Matt Jones, a doctoral candidate at Brown University and lead author of the study. In a press release.

The question is how this temperature affects the internal dynamics of the Moon. What we show is that under any reasonable conditions at the time the SPA forms, it ends up concentrating these heat-producing elements on the near side.

“We speculate that this contributed to the mantle melting that led to the pyroclastic flows we see at the surface.”

The volcanic plains on the near side of the moon are home to a group of Elements including potassium, rare earth elements and phosphorous among others – they are known as Procellarum KREEP terrane (PKT) and are rare elsewhere on the Moon.

The researchers ran computer simulations of how heat from a giant impact changes heat transfer patterns in the moon’s interior, and how this might redistribute KREEP in the lunar mantle.

According to their model, KREEP would have traversed the heat wave emitted from the area of ​​impact “like a surfer” whether the impact was a direct hit or the moon was just wounded. As the heat plume spread under the moon’s crust, this material was eventually transferred to the near side.

“How the PKT formed is the single most important open question in lunar science,” Jones said in the press release.

The South Pole-Aitken effect is one of the most important events in the history of the Moon. This work brings those two things together, and I think our results are really exciting.”

See also  NASA's James Webb Space Telescope mirror beats expectations as alignment continues